INTRODUCTION TO CAM

Definition

What is CAM?

The effective utilization of computers in manufacturing.

Direct application - device monitoring and control, NC, PLC, manufacturing cell.

Indirect applications - manufacturing support planning, MRP, process planning, scheduling, inventory, shop floor control.

THE HISTORY OF CAM

1950's

1960's

1970's

1980's

1990's

NC hardwired relay control **APT** language for NC Industrial robot Interactive computer graphics CNC computer **DNC/FMS** CAD/CAM PLC device & cell control **Computer vision** 3-D CAD Solid modeling Factory networking MAP/TOP CIM **Concurrent engineering** Intelligent Mfg System

THE HISTORY OF MANUFACTURING

Milestones

skeleton	Hand tools - thousands of yrs. to several thousands of yrs.
muscle	Machine tools - industrial revolution, 18th century, custom made products
smartness	Gauges - late 19th century interchangeability
resource mgmt.	Mfg. Systems - early 20th century Modern mgmt. Transfer line
nerve	NC, robot - 50, 60, 70's, FMS
brain	Intelligent mfg.

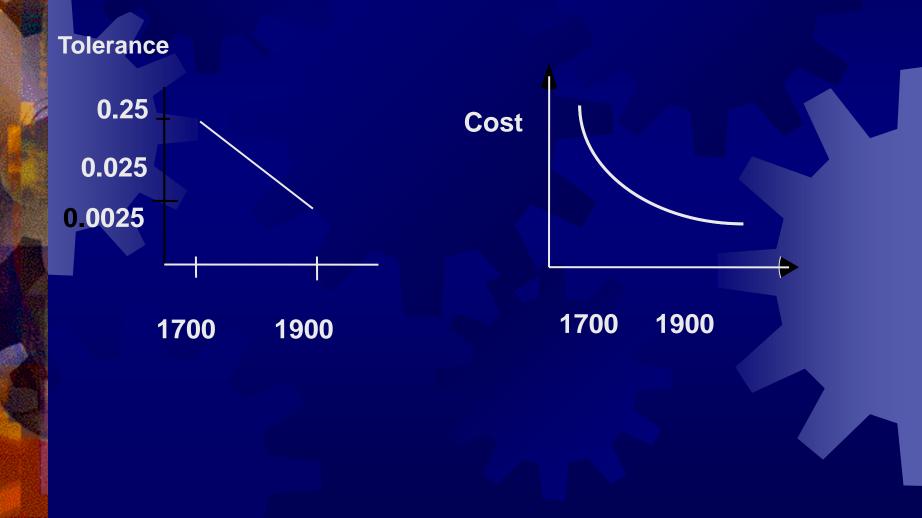
INVENTIONS IN MANUFACTURING

1750	Screw-driven lathe

- 1751Slide lathe 1st metal lathe
- 1770Screw-cutting lathe
- 1775 Boring mill
- 1813Interchangeability of parts
 - Simon North horse pistols
- 1817Planing machine
- 1845Turret lathe
- 1847Milling machine Brown & Sharpemaking twist drill helical grooves

1946 ENIAC - computer

THE TREND OF MANUFACTURING INDUSTRY


Facts:

- 1. Rapid changing market place
- Fast development of new technologies
 Vacuum Tubes ->: Transistor -> IC -> VLSI
 Wiring -> thru-hole PCB -> Surface Mount Component
 Quality product -> precision engineering -> nano-engineering
- 3. Fierce competition
 - Failing automotive industry, steel mills, Wang Lab, ...
- 4. A "use brain" generation, not willing to learn the trade which requires hand skill.

To survive:

- 1. Lower cost
- 2. Higher quality
- 3. Lower product development cycle

TOLERANCE AND COST REQUIREMENTS IN PRODUCTION

SOLUTIONS DEVELOPED

- 1. Small batch production 95% in lot size of 50 or less.
- 2. Just in time production, reduce inventory (union?)
- 3. Automation quality, labor cost

Automated lathe, screw machine (Swiss machine), transfer line

4. Flexible automation - further reduce lead time, automation of small batch

(NC, FMS, FMC, Robotics, ...)

5. Integration - CAM, CIM, concurrent engineering, TQM, etc.

BENEFITS OF CAM

90% Inventory reduction

50% more efficient use of factory & warehouse space

75% reduction in machine setup time - item setup (remeasurement, repositioning, and replacement of cutting tools,..)

Does not change product specific set-up. 25% reduction in direct and indirect labor 90% reduction in lead time

PROBLEMS AND STATISTICS

According to a study by Kelley, M.R., Brooks, H., The State of Computerized Automation in US Manufacturing, J.F. Kennedy School of Government, Harvard University, Oct, 1988.

11% of machine tools are programmable type in US40% (estimated) in Japan50% (estimated) in Germany

More than half (53%) of the metal-working plants in US do not have even one computer-controlled machine. Less than 5% use NC have FMS.

To implement, need not only technology but also organizational changes. Larger plants have better chance.

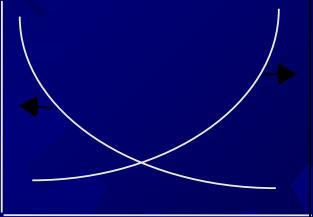
Too small a batch size is cited by 3/5 of all non-adopters as the reason of not implementing computerized automation.

ADDITIONAL COSTS OF USING CAM VS MANUAL OPERATION

Programming

- Special tooling design and manufacturing
- Program proof out, 1st good part is a dream, not a reality.
- Maintenance more sophisticated system.

CURRENT PROBLEMS


- 1. Manufacturing not emphasized enough
- 2. Designer tend to design for functionality alone
- 3. Manufacturing engineers lack overall concept in manufacturing
- 4. Systems are not integrated.

CONCURRENT ENGINEERING (SIMULTANEOUS ENGINEERING)

Design product and process simultaneously. "Do not focus on only one aspect of the product realization process."

EFFECT OF TOLERANCE

Mfg cost

Quality opportunity cost

Tolerance value

FUTURE

Alvin Toffler, Power Shift, 1990 (two other books by him: The Future Shock, 1970 The Third Wave, 1980) Sources of power:

Sources of power Force Money Knowledge

From information to knowledge.

THREE LEVELS OF COMPUTERIZATION

Data processing Information processing Knowledge processing

BASIC TAXONOMY OF MANUFACTURING

 Discrete vs. Continuous Mfg
 Discrete - finite number of discrete steps parts & product separable entities
 TV, car,.....

Continuous - continuous process

We deal with discrete mfg. in this class.

DESIGN FOR MANUFACTURING

Designing products for the ease of manufacturing.

- use std components (parts)

general guidlines

- use work mtl. shape to design

Some approaches:

parameterized product model gear,.....

 restrictive CAD system, force designers to use certain design features which are proven easy to mfg.

mfg. evolution during the design stage

MATERIAL PROCESSING

Machining: Turning Drilling Reaming Boring Tapping Milling Grinding Broaching Planing Shaping Sawing EDM/ECM Laser

MATERIAL HANDLING

Mtl transportation - longer distance between cells

Mtl handling - short distance within cell

MATERIALS PLANNING

mtl type

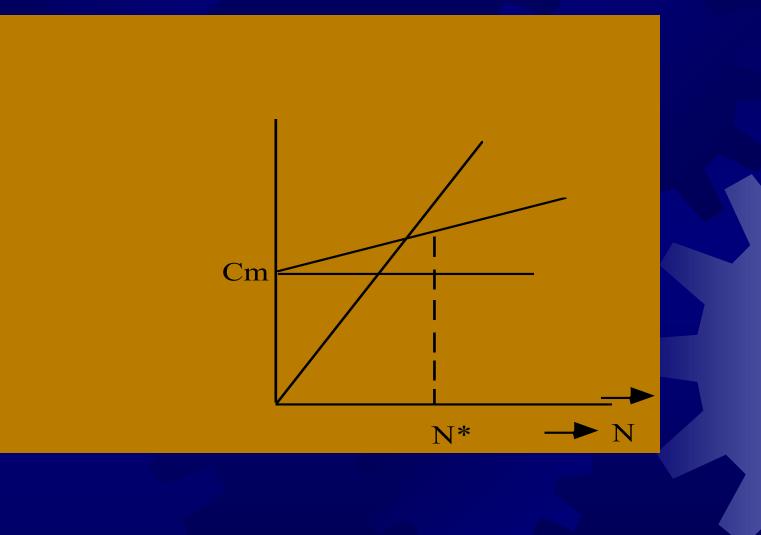
mtl_shape

— mt1 preprocessing methods

eg. shape: stock, casting,....

MATERIALS SELECTION COST MODEL

Other than the strength consideration the cost is another major one


$$NC_1 + N\sum_I C_I V_I = C_M + N\sum_I C_I V_I + NC_1$$

N: batch size

batch size

 C_1

- cost for preparing one workpiece from stock
- cost of m/c a unit volume by process i C_i
- volume being machined by process i from the casting V_i
- cost of mold C_m :
- V_i ' volume being machined by process i from the casting
- C_1 ': incremental cost of making one casting

BREAK-EVEN POINT

LAYOUT FOR DISCRETE PARTS PRODUCTION

Layout affects the production efficiency

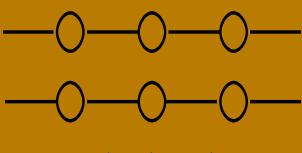
Automation

Process layout - individual m/c, NC.....
 Product layout - transfer line technology

3. Group layout - FMS, FMC

PROCESS LAYOUT (functional layout)

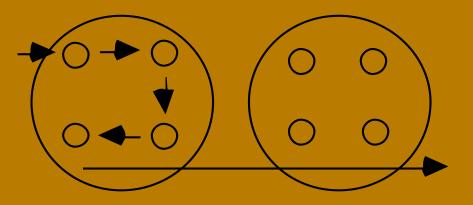
Milling	
Drilling	Grinding


Job Shop

- transportation problem random route
- scheduling problem

complex flow

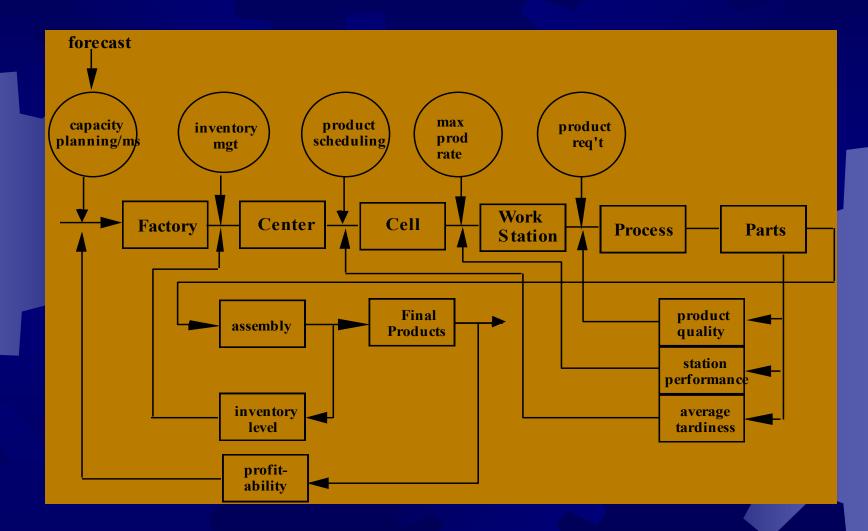
- most flexible, no new layout for new prod.
- for batch production


PRODUCT LAYOUT (flow layout)

Production Line

- may need redundant m/c's
- simple scheduling, easy to automate the mtl transportation function
- less flexible
- for mass production

GROUP LAYOUT (cellular layout)



• combination of 1 & 2

• trade-off interdepartment mtl handling w/ intra-department M.H.

Each cell produces one or a few families of parts.

MANUFACTURING SYSTEM CONTROL

